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Abstract The present paper is concerned with the prohlem of determining: dynamic 51 F of a penny
shaped crack in an infinite elastic medium, which is suhjected to the action of time-harmonic axial
body forces, placed symmetrically with respect to thc crack plane. The solution of the problem is
obtained by superposition of the solutions of two simpler prohlems, The first of these problems is
related to the lInpcrllIrhei! (crackless) space under the prescribed axial body forces, while the second
problem consists in finding: the dynamIC 5IF of the penny-shaped crack whose faces are directly
acted upon by some axial stresses. The form of these axial stresses is determined from the solution
of the first problem. Fourier and Hankel transforms have been used to solve the first problem, Next
by means of the Hankel transform, the second problem has been reduced to a pair of dual integral
equations which have been subsequently transformed into a Fredholm integral equation of the
second kind via an auxiliary function. The integral equation has been solved numerically in order
to determine the variations of the dynamic stress intensity factor at the rim of the penny-shaped
crack for some particular hody force loading cases,

I I:\TR()[)LCTIO:\

Problems of cracks and inclusions under dynamic loadings continue to attract attention of
the researchers because of their numerous practical applications, especially in seismology,
non-destructive evaluation and geophysics, However in this area the bulk of the previous
investigations are restricted to the consideration of the cases where the elastic bodies
containing cracks are subjected to the action of loads placed directly on the crack borders
or the elastic waves impinging on the crack surfaces originate from a source situated at
infinity, From the mathematical point of view, these cases are identical. However in many
practical situations, one frequently encounters problems of determining stress intensity
factors for cracks or inclusions in bodies supported or strengthened by stiffeners, stringers,
rivets etc. In practical considerations, the reactions of these strengthening materials are
replaced by body forces, In elastostatics_ starting with Sneddon and Tweed's (1967a, b,
1971) and Tweed's works ( 1969a, b), there appeared quite a good number of papers relating
to mixed boundary value problems of elasticity, involving body forces, Excellent reviews
of works in this direction can be found in Kassir and Sih ( 1975), Galin (1976), Andreikiv
(1982) and Fabrikant (1991), However in elastodynamics such solutions are scarce, Prob
ably it was Borodachev (1974) who first treated an elastodynamic crack problem involving
body forces,

The present paper is concerned with the axisymmetric problem of determining the
dynamic stress intensity factor of a penny-shaped crack in an infinite elastic solid in which
time-harmonic axial body forces are available, Solution or the title problem has been
obtained by superposition of thc solutions of two simpler problems, The first problem is
concerned with the determination of the clastodynamic field in an uNperturhed or crackless
space under the prescribed body forces, while the second problem consists of finding the
dynamic stress intensity factor of the penny-shaped crack whose faces are dirccth acted
upon by some axial stresses, The form of these stt-csses is determined from the solution of
the first problem, Fourier and Hankel transforms have been employed to solve the first
problem, Essentially the solution of the first problem explores the elastodynamic field
induced in an infinite space by the action of symmetrically placed time-harmonic axial body
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forces. Next Hankel transform has been used to reduce the second problem to a pair of
dual integral equations which have been subsequently transformed into a Fredholm integral
equation of the second kind via an auxiliary function. The integral equation has been solved
numerically in order to determine the variations of the dynamic SIF at the vicinity of the
penny-shaped crack with the longitudinal wave number for different values of the body
force placement distance for two body force loading cases, of which the first corresponds
to the case where the elastic body with the penny-shaped crack is stretched by symmetrically
placed uniform axial loads of constant intensity. harmonically changing in time, whilst the
second one corresponds to the case where the elastic body is subjected to the action of
symmetrically placed concentrated loads uniformly distributed over a circular region. The
problem of determining the dynamic 51 F of a penny-shaped crack in an elastic solid under
time-harmonic lors;o/la/ body forces has also been treated in a similar fashion in a recent
work by the author (Rahman. 1994).

In fact, the present paper may be regarded as an extension of the well-known works
by Robertson (1967) and Sih and Loeber (1969). Problems of diffraction of elastic waves
at a penny-shaped crack have also been investigated by Mal (1968), Achenbach et al (1978),
Srivastava t'l a/ (1982). Krenk and Schimdt (1982). Martin and Wickham (1983), Keogh
(1986). Lin and Keel' (1987). Budreck and Achenbach (1988) and others. Good reviews of
works in this direction can be found in Kraut (1976). Sih (1977), Guz C! a/ (1978), Slepyan
(1981). Parton and Boriskovsky (1990) and Freund (1990).

2 FORMLLATION OF THE PROBLEM

Consider a cylindrical coordinate system (r. 0.:) with the origin at the center of a
penny-shaped crack and let the crack occupy the region 0 :(: r :(: a. 0 :(: 0 :(: 2n, z = O. The
crack is assumed to be excited by the stress waves caused by the action of axially symmetric
time-harmonic axial body forces F(r. ::.1) = F*(r.:) exp(iwI) placed symmetrically with
respect to the crack plane:: = 0 at a finite distance from it.

The title problcm reduces to that of finding the solution of the following partial
differential equations of the motion of the elastic medium (Lurie. 1970) :

(I)

where i .. Jl are the Lame's constants. p is the density of the material of the elastic medium,
ii, and Lie are the non-zero components of the displacement vector. e = (I /r)D(ruJ/c7r + auolez
is the dilatation and V = ?rC+ (1 r)t ('I' + (c>i~::c is the axisymmetric Laplacian.

The non-zero components of the stress tensor are related to the those of the dis
placement vector by the following relations:

til,
(j = "II + i.e

" - ('I'

( 11
(j = :Y.Il " + I.e

(

_.., II,
(J"" - _II + i.e. (2)

The solution of the equations (1) is subject to the following mixed boundary conditions:
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(L(r, 0, t) = 0, 0 ~ r < a

U,(r, 0, t) = 0, r > a

IJ,.Ar, 0, t) = 0, 0 ~ r < CD
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(3)

In the sequel, we shall consider time-harmonic vibration of the elastic space, which means
that all field quantities vary in time as exp(iwt), where w is the circular frequency of
vibration and i = J'=l is the imaginary unit. In view of this, the elastodynamic equations
(I) take the following form:

U,* (I )De* ,Vu*--+ --1 -.-+k'u*=O
I r'2 8 2 Dr - /

(
1 ) ce*, F*

Vu~+ --I --.-- +k,u~=---..C
- £2 c:: - - )l

(4)

where c = C2!CI = [(I-2v)!2(I-v)]12 (v is the Poisson's ratio ?fthe material of the elastic
medium), k j = w/Cj(i = 1,2) and C 1 = J(),+2)l)/p and C2 =,j )l!p are the dilatational and
shear wave speeds, respectively. Here the asterisked quantities denote the complex ampli
tudes of the corresponding field quantities.

In the subsequent analysis, the time-factor exp(iwt), common to all field quantities,
will be omitted but understood.

Within the framework of linear elasticity, the solution of the formulated problem can
be obtained by superposition of the solutions of two simpler problems. They are as follows:

Problem 1.
It is required to solve the eq uations

u* (I )oe*Vu*--'-+ --1 --+k;u*=O
I ,.1 £2 or .;. I

with the boundary conditions

u~(r,::) = 0,0 ~ r < x

IJ,;<(r,O) = 0, 0 ~ r < x

F~

)l
(5)

(6)

In fact this problem consists in determining the elastic field in an unperturbed or crackless
space under the action of the prescribed body forces FAr,::,t). Obviously this problem is a
non-mixed one. For this problem it is an easy matter to find the normal stress IJ:"II)(r,O)
(the superscript 1 denotes the quantity pertaining to the first problem).

Problem 2 (the perturbation prohlem).
To find the solution of the following equations

u* (I )De*
Vu,*-~+ --:;-1 -:;-. +k~u,*=O

r- £c cr

(
I ) ('e*

Vu*+ -. -I -- +k2 u* = 0
- [;2 OZ 2_

subject to the mixed boundary conditions

(7)
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(J*(r, O) = -p(r),O:( r < a

u~(r, 0) = 0, r > a

(J~(r, 0) = 0,°:( r < J~ (8)

where per) = (J~( I) (r, 0).
In other words, we have to find the stress distribution in the elastic space with the

penny-shaped crack whose faces are acted upon by some dynamic normal stresses
(J=*ll) (r, 0) exp(iwt).

Solutions of both problems must also satisfy the radiation conditions so that the
outgoing waves have null fields at infinity.

3. SOLUTIOl\ OF THE FIRST PROBLE\f

In order to solve the first problem, we introduce the following mixed Fourier-Hankel
transforms (Sneddon. 1972):

where

,ff {yt I [u:(r, =);

y; {,Jt 0 [u~(r, =) :

,J'{yt 0 [F~(r, =) ;

I' ~ s]; =~:x} = U(s,:x)

r ~ s]; =~ :x} = V(s,:x)

r~s]: =~:x} = Q(s,:x) (9)

,F(f(r, =):

11 ,[f(r,.::) :

1 ' ,
.:>-> :x] = -.' ; j .fer, =) exp(i:x=) d.::

(2rr)l- /

r ~ .1'] = j' /rf(r, .::)J,.(rs) dr
II

are the Fourier transform and Hankel transform of the l'th order, respectively of the
function f(r,'::), and J,.(rs) is the Bessel function of the first kind and of the vth order.

Application of these transformations to the equations (4) and subsequent inversions
of the Fourier and Hankel transforms, lead to the following expressions for the components
of the displacement vector:

u*(r,.::) = -_~_- r/sJ" (rs) ds IX !/J c(s, :x)Q(s,:x) exp( - i:xz) dO( (l0)
. (2rr)I'Jo "'f

where

(11 )

Note that the functions !/Jl(S,:X) and !/Jc(s,O() are odd and even, respectively, with respect to
Ct..

Since we are considering body forces that are symmetric with respect to the plane z = 0,
the function F~(r, z) is odd in .:: and hence the following relation holds:



where
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0(.1'. ex) = i OJs, ex)

(
2)12 I" ~I

0,(.1', ex) =; Jo rIo (rs) dr 1, F*(r,.::) sin(o:.::) dz
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so that the function O,(s,ex) is odd in ex. Considering this and also the fact that the
functions 1/;1 and 1/;2 are respectively odd and even with respect to ex, we replace the Fourier
exponential inversions in eqn (10) by Fourier cosine and sine inversions, respectively, thus
obtaining

(
"'))1- 11 II

u7(r,.::) = ~ Jo slo(rs)d.IJo 1/;2 0 ,sin(ex.::)do: (12)

Let us now turn to the determination of the stress field. Putting eqn (10) into the expressions
(22) and (23), after some simple manipulations. we obtain

I if rIO(J:*(r,.::) = --1-' rIo (rs) dr 0(.1', ex)Qrr(s, ex) exp( - i:xz) da
(2rr) - 0 • /

where

(
1)12 11 ~,

(J,*,(r,'::) = 11 2rr Jo rll(rs)drJ (lal/;I +sI/;2)Q(~,a)exp(-io:z)do: (13)

(14)

Again, considering the oddness and evenness of the functions 1/;1 and 1/;2> we can rewrite the
expression for (J~(r,.::) as

(15)

Putting z = 0 into the expressions for u*(r• .::) in eqn (12) and (J,~(r,.::) in eqn (15), it can be
easily seen that the boundary conditions of the first problem given by eqn (6) are completely
satisfied. Since the solution of the second problem necessitates determination of the function
(J:*(I)(r,O), in the sequel we shall focus our attention exclusively on the function (J:*(r,z).

Our next step is to transform the expression for (J*(r,.::) in eqn (13) into a more suitable
form, since the solution (13 1) is given in terms of the Fourier and Hankel transforms.

Thus using Faltung theorem (Sneddon, 1972) for the Fourier transform in the
expression for cr7(r,'::) in eqn (13). we obtain

(16)

where

SAS 32-21-1
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rUI,;:-) = .:1'-1 {Oa(S, ct) ;ct -> z}

O(s,;:-) = .y;-I {O(s, ct); rx -> z}. (17)

Here.#' 1 denotes Fourier inverse transform.
Note that the function O(s, ;:-0), being the inverse Fourier transform of the function

O(s, :x), is the Hankel transform of the function F~(r, zo) and hence we can write

(18)

Putting eqn (18) into eqn (16) and changing the order of integration, we obtain

For the product of the Bessel functions in eqn (19), we use the following expression due to
Neumann (Webster, 1927) :

I fnJo(rs)Jo(ros) = - Jo(r's) d¢
n 0

where 1" = (1'2 + r~ - 21'1'0 cos ¢) 1 2.

Insertion of eqn (20) into eqn (19) leads to the following expression for er~(r, z) :

17*(1',:::) = 2n r,x rodro r
x

G:(r,ro;:::,zo)F~(ro,zo)dzo
,,0 '" - z

where

Here

\f'*(r,:::) = Jt 0[':1' -I {Or-(s, rx); ct -> z} ;S -> r]

(20)

(21)

(22)

(23)

Performing Fourier and Hankel inversions in eqn (23), the following closed-form expression
has been found for \f'*(r,;:-) :

where Ro =(1'2+:::2)12.

Note that the function \f'*(r,:::) is odd in ;:-.
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The structure of the eqn (21) clearly shows that G:(1',1'0 ; z, zo) represents the required
Green's function of the first problem, which corresponds to the action of a unit time
harmonic concentrated load acting in the axial direction and uniformly distributed along a
circular ring of radius 1'0 at a distance Zo from the z-plane. The correctness of the solutions
(21), (22) and (24) has been established in a recent paper by the author (Rahman, 1995).

The expressions for the displacement components given by eqn (10) can also be
transformed into more suitable forms as we did in case of the function (J1(r, z). However in
the present analysis we omitted these transformations, insofar as in the sequel we will only
need the expression for (J1(r, 0).

It is also worth mentioning in this context that the problem of determining elasto
dynamic fields in an infinite space under the action of time-varying body forces was also
considered by Eason et al (1956). However the solution was given in the domain of the
corresponding integral transforms. Evidently such a solution is of limited importance, since
in each body force loading case, one is to find the corresponding transforms of the body
force loading function and evaluate a number of integrals. In this sense the present approach
is direct.

Expressions (21), (22) and (24) give required solutions to the first problem. However
in order to solve the second problem, we need expressions for (J1(r, z) for the case where
z = O. Thus putting z = 0 into eqn (21), we get

(25)

The expressions (22), (24) and (25) are sufficient to turn to the second problem. However
before proceeding to solve the second problem, let us consider some cases of the body force
loadings of the elastic space.

Example I : let the elastic space be subjected to two concentrated loads P exp(iwt),
acting in the axial direction. placed symmetrically with respect to the plane z = 0 at a
distance Zl from it. In this case, we have

(26)

where b(. .. ) is the dirac's delta function.
Putting eqn (26) into eqn (25) and considering that the function '¥*(r, z) is odd with

respect to z, we get

2P
(J*(r,O) = --" '¥*(r, z).

(2n)' 2
(27)

The corresponding static solution can be obtained by letting w tend to zero in eqns
(27) and (24). Omitting intermediate calculations, we record the final result as

PZ 1 (1-2V Z~)(/.(1',0) = --- -- +3--
. 4n(1-v) R' R 5

The expression (28) is accurately the same as that given in Lurie (1970).

(28)

Example 2: consider the case where the elastic space is subjected to the action of
uniformly distributed time-harmonic axial loads of constant intensity (J over a circular
region of radius c, placed symmetrically with respect to the plane z = 0 at a distance z = z I

from it. In this case,
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(29)

where H( . .. ) is the Heaviside step function.
Putting eqn (29) into eqn (25). we obtain

r,

0">1«1'.0) = 41I0" J 1'0 G:(r. 1'0 ; 0, Z I) dro
o

(30)

Analogous expressions can be derived for any axisymmetric time-harmonic body force
loading cases.

We now turn to the solution of the second problem.

4. SOLUTION OF THE SECOl\D PROBLEM (THE PERTURBATION PROBLEM)

In view of the symmetry of the second problem with respect to the plane z = 0, it is
sufficient to consider only one half-space. say, the half-space, Z ~ O.

Now applying Hankel transform, the solution of the equations (7), satisfying radiation
conditions, can be represented as

(31)

where A, (j = I. 2) are the unknown coefficients to be determined using the boundary
conditions (8) and f'} = SC - k;. (j = 1.2). As per the radiation conditions at the time factor
exp(iwt). the branch cuts of the multivalued functions ill = 1,2) are determined as

ilv\2-kyl ifs>k,

"/, = tlv -k71 ifs < k
i

Detailed description of the radiation conditions as well as how to choose the required
branch cut of the multivalued functions ;'li = 1.2) can be found in Eringen and Suhubi
(1975) and Achenbach (1984).

Using (31) and the boundary condition (8,), it can be shown that

where

O"~(r. 0) = p.:/( 0 [iV(s) VII (.I', 0) ; S ~ 1']

VII (s.:) =:/( () [u>l«r.:) ; I' ~ s]

(32)

Now in view of the boundary conditions (8 1 ) and (8c) and using eqn (32), we obtain
the following dual integral equations:

I
~' 7 . per)

siV(s) vH(s.O)Jo(rs)ds = -'-,
~o P

r'SVH(s.O)Jo(rs)ds=O, r>a
Jo

O::;:;r<a

(33)

By writing x = r:a,.1' = as and k = k 2a. the dual integral equations (33) can be rewritten in
the following dimensionless form:
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51 C. 1[1 + H(x)) 1/1 (x) = f(x), 0 ~ x < I

5oo l/1(x) = g(.y), x > I

where

H(x) = - [1 + M(x) l
2(1_C;2)X

(2xC _k2)2 -4x2 (X2 _ [;2 k2) I 2 (X2 _ k2) I 2

AI(x) = ,', " ~-
k-(r-ck-)I -

I/1(X) = a l VH(x/a,O)

and 5~., is the Hankel operator defined by

5",[(x) = 2'x- 'l J~' t I 'Jc,,+ ,(xt)f(t) dt
II
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(34)

In eqn (34) we have f(x) = fl(x) = xa 2p(xa)/4p(I-EC
) for 0 ~ x < I and f(x) = f2(x)

is unknown for x > I, while g(x) = gl (x) is unknown for 0 ~ x < I and g(x) = gk\") = 0
for x> 1.

Following Cooke (1965), we put Sneddon's trial solution 1/1 = 5 0 . 12Q into eqn (34) to
reduce them to the following Fredholm integral equation of the second kind via the auxiliary
function q(x) :

where

~I

q(x) +J K(x, u)q(lI) dll = r(x)
o

2k I'K(x. u) = -- H(kt) sin(xtk) sin(lIkt) dt
n 0

(35)

(36)

The integral equation (35) is basically the same as that obtained by Sih and Loeber (1969)
and Robertson (1967).

Applying contour integration to the integral (36d [see Robertson (1967)); the kernel
K(x, u) can be reduced to the fol1owing form suitable for numerical computation:

~I

+J .1'( 1_,\2) I 2 sin(xsk) exp( ~ iusk) dol'], x < u. (37)
o

The expression for the kernel K(x, u) for the case where x > u can be obtained by simply
interchanging the positions of x and u in eqn (37).

5. DYNAMIC STRESS INTENSITY FACTOR

It is wel1 known that in case of time-harmonic vibration, stress intensity factor is
determined as
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K[(t) = Kjexp(iwt)

Here Kj is the complex amplitude of the SIF, which is determined as:

which can be represented as Kj = rxK" exp( - ib) so that

YKj
b = - arctan ---~

.JdKj
(38)

where (J. is some coefficient which depends on the properties of the elastic material and
mutual position of the crack and the loads. K" is the static SIF, for the case where the
corresponding loads are applied directly on the crack surfaces.

We next introduce the notation

With this notation, from eqn (38) we have

'Y. = Ih(I)1

. .7h(l)
o = - arctan -.--

Jdh( I)

In view of the notation in eqn (39), the governing integral equation (35) is reduced to

r
l 2a I 2 i' up(ua) du

hex) + K(x, u)h(u) du = K 1 J J

• () 11" Il (x- - u-) I -

(39)

(40)

(41 )

By making the change of variable u = x sin ein the right-hand side ofeqn (41), we rewrite
eqn (41) in the following form more suitable for numerical computation:

rI '") \"ell 2 r" 2
hex) + I. K(x, u)h(u) du = ~ sin ep(xa sin e) de

,,0 11K" ,,0

(42)

6. NUMERICAL RESLLTS AND DISCUSSION

The integral equation (42) has been solved numerically for two body force loading
cases. All computations in this paper have been carried out for Poisson's ratio, v = 0.25.

Case I
The elastic space with the penny-shaped crack is stretched by uniform axial loads of

constant intensity (J, acting over a circular area of radius a (same as the radius of the crack)
and placed symmetrically with respect to the crack plane z = 0 at some distance z I from it.
For this case the functions F~(r,.:) and per) are given by eqns (29) and (30), respectively,
with c replaced by a. Note that this case reduces to that considered by Robertson (1967)
and Sih and Loeber (1969) when the body force placement distance tends to zero. The
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static SIF corresponding to the case where uniform axial pressures are placed directly on
the crack faces is given by Kassir and Sih (1975) and Andreikiv (1982) :

2(Ja I 2

K s,=-
rr

(43)

Putting eqn (43) into eqn (42), we obtain the integral equation to be solved for this case:

i
l

'iIT2hex) + K(x, u)h(u) du = ~ sin Op(xa sin 0) dO.
o (J 0

(44)

The corresponding static solution can be obtained by letting (J) tend to zero in eqn (44) in
which case the kernel K(x, u) tends to zero and we obtain as per eqn (40)

I iIT
2ctst = h(1) = -- sinOps,(asinO)dO

(J 0

(45)

where Plf(r) is the static counterpart of the solution (30) which can be obtained by letting
(J) tend to zero, namely

(JZI ia i"(1-21' zi)Pst (r) = ~--_. ro dro -~,- + 3--5 def>
2rr(I-I') 0 0 R[ R[

(46)

where R[ =(r2 +r6+zi-2rrocosef»[ 2.

We have first determined the variations of the normalized static SIF, ctst , with the
normalised body force placement distance, H = Z I / a by using numerical integration rule to
the integrals in eqns (45) and (46), namely, integrals with respect to 0 and ef> have been
evaluated using 32-point Gaussian quadrature rule while the integral with respect to ro has
been evaluated by using 8-point Gaussian integration of moments (Abramowitz and Stegun,
1965). The results thus obtained are illustrated graphically by the solid line in Fig. 1. We
have next solved the integral eqn (44) using 32-point Gaussian quadrature rule to determine
the normalized dynamic SIF, ct, for different values of the longitudinal wave number, kja
and the normalized body force placement distance H = zj/a. These results are represented
in Figs I and 2. As can be seen from the Fig. I, dynamic SIF generally decreases with H.
Note however that at bigger values of the parameters k j a and H, the dynamic stress intensity
factor oscillates. Figure 2 illustrates the variations of ct with the longitudinal wave number
for different values of the normalized body force placement distance. One can observe the
dynamic SIF overshoots, i.e. the peaks of the values of the dynamic stress intensity factor
with respect to the static one, for certain ranges of frequency. This means, of course, that
the possibility of an abrupt catastrophic crack propagation increases in the dynamic case,
in comparison with the analogous static situation under the same external loading ampli
tude. For H = 0, the first peak value is approximately 1.478 (for v = 0.25) which occurs at
kja = 0.85. This result has been obtained by Sih and Loeber (1969) and confirmed by our
method. At low frequency ranges, the results obtained are found to be in good agreement
with the corresponding static result, being represented by the solid line in Fig. I.

Case 2
As the second example, we consider the case where the elastic space with the penny

shaped crack is acted upon by two concentrated loads P distributed uniformly over a
circular region of radius b(b ~ a) and placed symmetrically with respect to the crack plane,
z = O. For this case
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Fig. I. Variations of the normalized dynamic SIF with the normalized body force placement distance
for different values of the longitudinal wave number.

(47)

Putting this expression into eqn (25), we obtain

(48)

The static stress intensity factor corresponding to the case where tractions of the form (47)
act directly on the crack borders is given by Kassir and Sih (1975) and Andreikiv (1982):

2Pa
l

C ( !---h~)
K.=-- l-~l--.1/ .,., .,

n'h, (r
(49)

We shall use eqn (49) as the normalizing SIF for this case.
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Putting the expression (49) into eqn (42). we get the governing integral equation for
Case 2:

II nb2x rn2

h(x)+ K(x. u)h(u) du = -_..... __ sin 8p(xa sin 8) d8.

(l ( / b2)" (l
P 1- 11-----.;-

\j a-

(50)

Note that this case reduces to the Case I if a = b. Also. note that at b ---> O. we have the case
where the elastic space is subjected to the action of two symmetrically placed time-harmonic
concentrated loads, for which case the corresponding function p(r) is given by eqn (27).

The integral equation corresponding to the case where the crack faces are directly
acted upon by the stresses of the form (47) (that is. H = 0) can easily be shown to be

h(x) +II K(x, u)h(u) du = s(x)
(l

(51)

where
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x
s(x) = ------,

Moo

1- I-~
a-

b
x:s:;-<I

a

X(I- ~)V1-;;;2
s(x) = ------

M'
1- I-~

a-

b
x> -.

a
(52)

The static solution corresponding to Case 2 can be obtained by letting OJ tend to zero in
eqn (50) in which case K(x, u) tends to zero and we find that

nb" fIT 1

:X,t = sin 0ps, (a sin 0) dO

( ~) ()

P I-Vl--;;;

where P,,(r) is the static counterpart of the solution (48), namely

PZ 1 fh fIT (1-2V ZT)p,,(r) = ---,-- 1'0 dro --+3- d¢
2nb-(I-v) 0 0 Rf Rj

(53)

(54)

whereR , =(r"+r6+zT-2rrocos¢)I".
Closed-form expression for:x" given by eqns 53 and 54 can be obtained only for the

case where b = 0, which corresponds to the case where the elastic space with the penny
shaped crack is under the action of two concentrated loads placed symmetrically with
respect to the crack plane. Indeed, by letting b tend to zero in eqns (53) and (54), we obtain:

H fIT
1 (1-2V ZT).

:Xst = 2(1- ,) -~3~ +3-
5

smOdO
\ 0 Rfl R u

(55)

where RH =(sin"O+H")I", H = zi/a.
The integrals in egn (55) are evaluated in closed forms using the integral 3.676.1 from

Gradshteyn and Ryzhik (1980) and is as follows:

I+AH"
~st =
. (I +H")"

(56)

where;\ = (2 -1")/( I - v), which is the well-known classical solution by Sneddon and Tweed
( 1967a).

It can be easily seen from egn (56) that the static SIF in this case attains the maximum
value of (2-v)"/4(I-v) at H = -./v/(2-v).

We now summarize the steps of the numerical computations carried out for this case:
1. Using egns (53), (54) and (56), we have evaluated the normalized static SIF for

different values of the normalized body force placement distance, H = zl/a, and the par
ameter b!a. As before the integrals involved in these expressions have been computed by
using 32-point Gaussian quadrature rule and 8-point Gaussian integration of moments.
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for different values of bla.

These results are shown in Fig. 3, where K1hu denotes the normalizing stress intensity factor
given by eqn (49). It is interesting to note that within a wide range of the values of the
parameter H, stress intensity factor changes very little. This observation may be useful in
experimental investigation concerning the determination of fracture toughness of materials.

2. We have next solved the integral equations (50) and (51) also using 32-point
Gaussian quadrature rule for different values of the parameters kIa, Hand bfa. These
results are illustrated graphically in Figs 4 to 13, where, as before, K1bla denotes the
normalizing stress intensity factor given by eqn (49). Though numerical computations have
been carried out for a wide range of values of the parameter bfa, figures have been plotted
for b/a = 1.0,0.9,0.8,0.7,0.5 in order that the plots not be overcrowded. From these plots,
it is clear that the stress intensity factor at the vicinity of the penny-shaped crack increases,
ceteris paribus, with the decrease of the parameter bfa, which is quite obvious. On the
otherhand, SIF usually decreases with H, except for a range of the values of H between 0.0
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and 0.5. where the stress intensity factor. similar to the corresponding static cases rep
resented by Fig. 3. increases in comparison with those values obtained for the cases where
the loads are placed directly on the crack surfaces. In numerical computations. 2.4. 6 and
15% increases of the stress intensity factor (with respect to the value of the SIF cor
responding to the case where the loads are placed dirl'crly on the crack faces) for k\{/ = 0.75
have been observed for ha = 0.9. OK 0.7 and 0.5. respectively for 0 < H < 0.5.

7. CO:--iCLLDI\lG REMARKS

In the present paper we have investigated the axisymmetric problem of determining
the dynamic SIF at the rim of a penny-shaped crack embedded in an elastic space in which
time-harmonic axial body forces are available. The solution of the problem has been
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obtained by means of superposition of the solutions of two simpler problems, namely the
infinite elastic space under the prescribed body forces and the infinite elastic space containing
the penny-shaped crack whose faces are subjected to the action of some time-harmonic
axial stresses. Fourier and Hankel transforms have been employed to solve the first problem.
The method can be used. mutatis mutandis. for any arbitrary axisymmetric time-dependent
body force loading cases (Rahman. 1995). The second problem has been reduced to a
Fredholm integral equation of the second kind via an auxiliary function, which has been
solved numerically in order to determine the variations of the dynamic SIF at the vicinity
of the penny-shaped crack for some particular cases of body force loadings. Of further
interest is the problem of determining the stress intensity factor for a mode-I penny-shaped
crack under time-harmonic il.ITml11l'tric body forces. Research in this direction will be
reported elsewhere.
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